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SUMMARY

Fluid–structure interaction (FSI) computations of two cerebral aneurysms are carried out under hypertensive
and normotensive blood pressures. Hypertensive blood pressure is one of the major risk factors in
subarachnoid hemorrhage, which is mostly caused by the rupture of cerebral aneurysm. Since hemodynamic
wall shear stress (WSS) is known to play an important role in aneurysm progression, investigating the WSS
distribution in conjunction with hypertensive blood pressure is expected to provide a better understanding
of aneurysms. The WSS distributions obtained from the simulations show that hypertensive blood pressure
considerably affects one of the subjects but not the other. The effect is a wider spreading of the high
WSS region on the aneurysm wall, which prevents the wall from weakening. It is also shown that the
deformation of the aneurysm wall can alter the flow patterns in the aneurysm to diminish the stagnant flow
near the apex, which is linked to the weakening of the wall. The effect of hypertensive blood pressure
and wall deformation is shown to be highly dependent on individual aneurysm geometry, and that stresses
the importance of subject-specific simulations. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cerebral aneurysm—its rupture is the leading cause of subarachnoid hemorrhage (SAH) [1] and
is known to be induced by blood flow [2]. In particular, the wall shear stress (WSS) serves
as a link between the blood flow and the aneurysm because the arterial wall remodelling is
controlled by the WSS acting on the endothelium [3]. The importance of the blood flow in
aneurysm progression was also shown by statistical data. The aneurysm geometry characterized
by the height, diameter, and neck width (or aspect ratio, AR= height/neck width) is reported
to indicate the progression and rupture risk of aneurysms [4, 5]. Ujiie et al. [4] particularly
connected the aneurysm progression to blood-flow stagnation owing to the aneurysm geometry.
Although hemodynamics in cerebral aneurysms has been investigated experimentally [4, 6] and
computationally [7–11], to better understand the aneurysm progression, the mechanism still needs
more comprehensive investigation. Researchers now expect numerical simulation to be an effective
tool in investigating hemodynamics in more detail. That is because measuring hemodynamics in
and resulting WSS on tiny cerebral aneurysms in vivo is still difficult. Also, more sophisticated
computational techniques, and more powerful computational resources are becoming available.

Computational work focusing on hemodynamics in aneurysms can be carried out at different
levels of approximation. Studies using idealized models [7, 8, 12] with idealized geometries and
flow conditions require less computational resources and can support parametric studies. Studies
using realistic geometries and flow conditions [9, 10, 13], including the fluid–structure interaction
(FSI) modelling [11, 14–16] in arterial fluid mechanics, occasionally coupled with mass trans-
fer [17], are closer to reality but require more computational resources. The FSI modelling is
crucial in accurate computation of the dynamics of the blood flow, the arterial wall deformation
and the interaction between the two. Fortunately much has been accomplished in recent decades
in the development of advanced computational techniques for FSI modelling and their parallel
implementation for efficient, high-speed computations (see, for example, [15, 18–35]). In an at-
tempt to have the advantages of both the idealized and realistic simulations, we have been working
on FSI simulations with realistic aneurysm models coupled with parameter changes representing
the changes in physiological conditions. We have been particularly focusing on the interaction
between the blood flow and the arterial wall deformation under high and normal blood pressure
conditions [11], because hypertension is one of the major risk factors in SAH [1, 36]. In this
paper, we apply hypertensive and normotensive blood pressure conditions to two patient-specific
aneurysm models to investigate how differently high blood pressure works on those aneurysms.

2. COMPUTATIONAL METHOD

The blood flow in cerebral arteries is assumed to be laminar [37] and governed by the Navier–
Stokes equations of incompressible flows. The fluid mechanics with moving and deforming walls is
computed with the deforming-spatial-domain/stabilized space–time (DSD/SST) method
[18–20, 25]. In the DSD/SST formulation, the streamline-upwind/Petrov–Galerkin (SUPG)
[38, 39] and pressure-stabilizing/Petrov–Galerkin (PSPG) [18, 40] formulations are employed for
stabilization. The DSD/SST method was introduced for flows with moving boundaries and inter-
faces and has been applied to a large class of problems [41–48], including FSI [21–24, 28, 35, 49].

The structural mechanics is governed by the force equilibrium equations and computed with
the Galerkin finite element method. The arterial structure is modelled as geometrically non-linear,
made of linearly elastic material.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:995–1009
DOI: 10.1002/fld



EFFECT OF HYPERTENSIVE BLOOD PRESSURE ON CEREBRAL ANEURYSM 997

The fluid and structural mechanics systems are coupled at the interface by kinematic and dynamic
conditions. The two systems are solved with a block-iterative coupling approach [28, 50]. The fluid
mesh is updated by using an automatic mesh moving method [41, 51], where the motion of the
nodal points is governed by the equations of elasticity. The boundary conditions come from the
motion of the interface between the fluid and structure. Details of the computational method are
described in [14].

3. COMPUTATIONAL MODEL

We reconstructed two aneurysm models at the middle cerebral artery (MCA) bifurcation based
on CT images (provided by Dr Motoharu Hayakawa, Fujita Health University). The models are
shown in Figure 1. Subject 1 is a 59-year-old female; the aneurysm was ruptured before it was
scanned. Subject 2 is a 67-year-old female; the aneurysm is unruptured.

(a)

ICAICA

MCAMCA

(b)

12.5 mm

12.1 mm

10.7 mm

(c)

11.2 mm

13.6 mm

8.67 mm

Figure 1. Aneurysm models based on CT images: (a) cerebral arterial network and the location of the
middle cerebral artery (MCA). The internal carotid artery (ICA) provides the main blood supply to the
cerebral arterial network, branching off of the common carotid artery; (b) and (c) aneurysm models
for Subject 1 (59-year-old, female, ruptured aneurysm) and Subject 2 (67-year-old, female, unruptured
aneurysm). The blue arrow denotes the inflow direction and the red arrows the resistance at the outlet

from the distal arterial network.
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Table I. Geometric features of the aneurysms.

Subject dmax (mm) dn (mm) h (mm) AR

1 5.64 3.99 2.93 0.73
2 4.90 2.57 7.22 2.81

Note: Here dmax, dn and h are the maximum diameter, neck width and
height. Aspect ratio, AR= h/dn .

Table II. Number of nodes and elements used in the computations.

Subject N f
n N f

e N s
n N s

e

1 49 395 46 000 11 520 10 800
2 53 769 50 240 17 397 11 480

Note: Here Nn and Ne are the number of nodes and elements, and the
subscripts f and s denote the fluid and structure.

Approximately 150 CT slices with 0.60mm intervals were used for the geometry reconstruction.
Each slice consists of 512× 512 pixels. The in-plane resolution of a slice is 0.3125mm/pixel. The
surface of the arterial lumen was then constructed with the matching-cubes method [52] as an iso-
surface at a certain CT signal intensity representing the arterial lumen. The reconstruction process
was carried out with the commercial software ALATOVIEW (Toshiba Medical, Inc.). Because
the arterial wall is invisible with the CT, it was added by assuming a uniform wall thickness
of 0.3mm and inflating the luminal wall outward. The arterial wall and the lumen for the two
subjects are shown in red and blue in Figure 1. The diameter of the arterial lumen at the inlet is
2.74 for Subject 1 and 2.38mm for Subject 2. At the distal end, the diameter ranges from 1.51
to 2.01mm. The diameter, height, neck width (= diameter at the open mouth of the aneurysm)
and the resulting aspect ratio are summarized in Table I. Comparing the aspect ratios with what
was reported in Ujiie et al. [4], Subject 1 shows the typical geometric features of an unruptured
aneurysm. On the other hand, the aspect ratio for the Subject 2 is within the typical range of a
ruptured aneurysm.

Eight-node hexahedral elements are used for the finite element discretization as shown in
Figure 1. We employ first-order interpolation functions for all variables. The number of nodes and
elements are summarized in Table II.

4. MECHANICAL PROPERTIES AND BOUNDARY CONDITIONS

Although the blood is known to be non-Newtonian in general, we assume it to be Newtonian in this
study.We are focusing on arteries with diameters and flow rates nearly equal to 3.0mm and 2.0ml/s,
respectively. Hence the averaged shear rate in the arteries is approximately �̇ = 4Q/(�R3)∼ 755 s−1

(Q and R are flow rate and radius). The viscosity of the blood can be approximated as a constant
when the shear rate in the flow is high enough (>150 s−1) [53]. The density and kinematic viscosity
of the blood are set to 1000 kg/m3 and 4.0× 10−6 m2/s, respectively. The arterial wall is assumed
to be made of linearly elastic material. The elastic modulus and Poisson ratio for the arterial wall
are set to 1.0MPa and 0.49.
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Figure 2. Flow (a) and pressure (b) waveforms. The flow waveform is based on the velocity
measured at the common carotid artery with ultrasound Doppler velocimeter. The pressure
waveform is determined based on the flow waveform to obtain the physiological range of

pressure assuming that there is no phase lag.

The inflow boundary conditions are specified as a pulsatile velocity profile prescribed by
Womersley’s formulation [54]

w(r, t) = 2B0

�R2

[
1 −

( r

R

)2] +
N∑

n=1

Bn

�R2

[
1 − J0(�n(r/R)i3/2)/J0(�ni3/2)

1 − 2J1(�ni3/2)/(�ni3/2 J0(�ni3/2))

]
ein�t (1)

Q(t) =
N∑

n=0
Bne

in�t (2)

where r is the cylindrical coordinate at the inlet, t is time and R is the radius of the artery at the inlet.
Here J0 and J1 are the Bessel functions of the first kind and of order 0 and 1, and �n = R

√
n�/�,

where � is the angular frequency of one cardiac cycle (�= 2� rad/s). The parameter � = R
√

�/� is
known as the Womersley parameter, which is the non-dimensional frequency of the pulsatile flow.
The coefficients Bn are derived in reference to the velocity waveform with Fourier decomposition.
The original velocity waveform was acquired with ultrasound Doppler at the carotid artery of a
healthy volunteer in his 20s. Figure 2 shows the flow waveform based on the measured velocity,
with the velocity profile modelled by the Womersley’s formulation.

The pressure conditions applied at the outlet represent the resistance from the distal arterial
network. These conditions are applied at the outlet as traction normal to the boundary, which are
shown with red arrows in Figure 1. The pressure at the outlet varies with time, prescribed by a
series of exponential functions, the same as those used in specifying the inflow conditions

P(t) =
N∑

n=0
Pne

in�t (3)
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Here the coefficients Pn are determined, based on the coefficients Bn used for the inflow conditions,
to produce the physiological range of 80–120mmHg for a healthy male. The hypertensive blood
pressure is modelled by changing the Pn to produce the range of hypertensive blood pressure,
110–170mmHg. The pressure waveforms for the hypertensive (HBP) and normotensive (NBP)
blood pressure conditions are shown in Figure 2. In this study, phase differences between the
pressure and velocity fluctuations are not taken into account. At the interface between the blood
and the arterial wall, no-slip conditions are applied in the fluid mechanics part and hemodynamic
forces in the structural mechanics part. Only the pressure difference from the level at the beginning
of the cardiac cycle is applied to the arterial wall. The boundary displacements at the inlet and
two outlets of the artery are set to zero. Influence of the residual stress are not taken into account.

5. RESULTS AND DISCUSSION

5.1. Wall deformation

Figure 3 shows the displacement magnitude at the peak systole (t = 0.06 s). The maximum
displacement at the peak systole is 0.752mm (HBP) and 0.700mm (NBP) for Subject 1 and
0.533mm (HBP) and 0.361mm (NBP) for Subject 2. For both subjects, the displacement is larger
under HBP than it is under NBP. However, for Subject 1, the difference in the displacement due to

Figure 3. Displacement magnitude at the peak systole (t = 0.06 s) for: (a) Subject 1 and (b) Subject 2,
with HBP (left) and NBP (right).
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the two pressure conditions during the systolic period is only 7.4%, although the systolic pressure
rise for HBP (∼ 60mmHg) is 50% larger than that for NBP (∼ 40mmHg). That is because the
displacement of the aneurysm of Subject 1 involves not only inflation but also a ‘swinging motion,’
as shown with the white arrows in the figure. Because the magnitude of the swinging motion is large
compared to the magnitude of the inflation, and because the swinging motion is not significantly
affected by the differences in pressure conditions, the difference in the maximum displacements
under HBP and NBP was not as prominent as the difference in the pressure conditions. On
the other hand, for Subject 2, the displacement of the aneurysm basically consists of inflation
in its radial direction. The maximum displacement therefore is proportionally dependent on the
pressure conditions. We can see that differences in the individual geometries of the aneurysms
lead to significantly different trends in the aneurysm displacement. The two subjects are affected
differently by hypertensive blood pressure.

5.2. WSS distribution

Figure 4 shows the WSS distributions at various instants near the peak systole. For Subject 1, at
the peak systole, the WSS on the aneurysm is smaller under HBP than it is under NBP. However,
immediately after the peak systole (t = 0.07 s), the WSS on the aneurysm is larger under HBP
than it is under NBP. The maximum WSS does not occur at the peak systole but after that, and the
high WSS region spreads more on the aneurysmal wall under HBP. There are two local maxima of
WSS at t = 0.07 s; one on the aneurysm and the other on the wall of the left branch near the neck.
Under HBP, the maximum WSS is 365 dyn/cm2 on the branch and 398 dyn/cm2 on the aneurysm.
Under NBP, it is 324 dyn/cm2 on the branch and 329 dyn/cm2 on the aneurysm. Hypertensive
blood pressure significantly alters the WSS distribution for Subject 1.

For Subject 2, the maximum WSS occurs at the peak systole on the wall of the left branch.
The maximum WSS at the peak systole is 282 and 345 dyn/cm2 under HBP and NBP. Unlike
Subject 1, the WSS on the aneurysmal wall is always lower than the maximum WSS. There is a
belt-like area of relatively high WSS at the middle of the aneurysm. The maximum WSS occurring
at that area is 103 and 108 dyn/cm2 for HBP and NBP. The WSS on the aneurysm is low apart
from the belt-like area. In particular, the low WSS region at the top of the aneurysm is linked to
the degrading of the wall and rupture of the aneurysm [4]. However, after the peak systole, the
area of relatively high WSS starts spreading towards the top. The area spreads over the top half
of aneurysm at t = 0.10 s, and the low WSS area at the top eventually disappears. The maximum
WSS in that area is 146 and 144 dyn/cm2 under HBP and NBP. The WSS for Subject 2 is lower
under HBP than it is under NBP. Hypertensive blood pressure does not alter the WSS distribution
for Subject 2, unlike what we see for Subject 1.

5.3. Flow velocity profile

Investigating the flow velocity profile helps in the understanding of the differences in the WSS
due to the pressure conditions. Figure 5 shows the velocity profiles corresponding to the WSS
distributions shown in Figure 4. For Subject 1, the blood flows from the inlet and impinges on
the neck of the aneurysm at the bifurcation. Flow impingement at a bifurcation was pointed as
key to understanding the relationship between hemodynamics and aneurysm because it produces
a focal area of high WSS [8, 10]. We previously showed that the impinging flow is even more
important in aneurysm hemodynamics when the wall deformation is taken into account [11, 16].
First, the deformation of the arterial wall proximal to the bifurcation affects the impinging flow
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Figure 4. WSS distribution for Subject 1: (a) at the peak systole (t = 0.06 s) and (b) immediately after the
peak systole (t = 0.07 s); and for Subject 2 (c) at the peak systole and (d) after the peak systole (t = 0.10 s),

with HBP (left) and NBP (right).
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Figure 5. The velocity profiles for Subject 1: (a) at the peak systole (t = 0.06 s) and (b) immediately
after the peak systole (t = 0.07 s); and for Subject 2 (c) at the peak systole and (d) after the peak systole

(t = 0.10 s), with HBP (left) and NBP (right). Colours represent the velocity magnitude.
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velocity, i.e. the expansion of the artery slows the impinging flow down. Second, the deformation
of the arterial wall near the impinging region can drastically alter the velocity gradient near the
wall and the resulting WSS. Figure 5 shows that, under NBP, the blood flows at high velocity
(∼ 0.75m/s) into both the aneurysm and the left branch. When HBP is applied to Subject 1, the
arterial wall near the impingement region deforms substantially at the peak systole. That enables
more blood flow at high velocity into the aneurysm. Higher flow in the aneurysm results in higher
velocity gradient near the wall and WSS on the aneurysmal wall. In addition, contraction of
the arterial and aneurysm walls at t = 0.07 s enlarges the velocity gradient near the wall. Since
low WSS should degrade the aneurysm walls, the effect of hypertensive blood pressure is to
prevent the arterial wall from degrading although there are low WSS regions remaining on the
aneurysm.

For Subject 2, the blood flow does not impinge on the neck but enters straight into the aneurysm.
Under both HBP and NBP, the flow impinges on the aneurysm wall and produces a belt-like high
WSS region, forms a large vortex accompanied with a smaller secondary vortex at the top, and
flows into the two branches. The velocity in the aneurysm becomes low as the blood flows further
due to the sudden expansion of the cross-sectional area at the neck of the aneurysm. Particularly
under HBP, the velocity in the top region of the aneurysm is extremely low because the expansion
of aneurysm slows the main stream from the parent artery down and the flow cannot reach far
into the aneurysm. However, after the peak systole, the direction of the flow into the aneurysm
changes. The blood flow reaches the top region of the aneurysm along the wall. The secondary
vortex, which is considered to be a typical flow pattern in an aneurysm with high aspect ratio,
disappears. That is the reason why a belt-like high WSS region occurring in the middle of the
aneurysm at the peak systole spreads on the top half of aneurysm. Because the flow profiles under
HBP and NBP at t = 0.10 s are similar, hypertensive blood pressure does not affect the trend of
the flow velocity profile or the resulting WSS distribution.

5.4. Hemodynamic characteristics and arterial wall deformation

The aneurysm shape for Subject 2 shows typical features of an ruptured aneurysm (AR>1.6)
[4], which causes recirculating flow with weak secondary recirculation in the top region of the
aneurysm linked to the weakening of the aneurysm wall due to low WSS. However, our com-
putational result shows that the secondary recirculation disappears after the peak systole. The
WSS on the aneurysm wall is consequently large in the top region. We also computed the blood
flow with rigid walls to investigate in more detail the hemodynamic features in the aneurysm
of Subject 2. The reason why the secondary recirculation disappears would particularly be of
interest.

Figure 6 shows the WSS distribution and flow velocity profile for the rigid-wall model at instants
shown in Figures 4 and 5. At the peak systole, the flow at high velocity from the inlet impinges
on the aneurysm wall, with a secondary recirculation in the top region. The flow profile stays
similar even after the peak systole. The maximum WSS on the aneurysm at the peak systole is
162 dyn/cm2, which is higher than it is for the compliant-wall cases. This is the result of the
flow impinging with higher velocity, not slowed down by the inflation of the artery and aneurysm.
However, the WSS at the top of the aneurysm is lower for the rigid-wall cases due to the secondary
recirculation.

Figure 7 compares, with magnification, the velocity profiles near the aneurysm for the rigid-
and compliant-wall cases, and illustrates the relationship between the aneurysm geometry and
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Figure 6. WSS distribution (a) and flow velocity profile (b) for Subject 2 with the rigid-wall model.

the flow patterns. The flow patterns at the peak systole are similar for all cases, i.e. the inflow
is bent and impinges on the aneurysm. Because of the deformation of the aneurysm wall at the
region indicated by the white arrow, under NBP the flow direction is slightly straighter towards
the apex of the aneurysm. The flow direction under HBP is also towards the apex, but the flow
velocity is too low to reach the top region because of the large inflation of the aneurysm. The wall
deformation at the region pointed by the white arrow remains after the peak systole. That allows
the flow to proceed straight along the wall and reach the apex of the aneurysm. For the rigid-wall
case, on the other hand, the curvature of the aneurysm wall keeps the flow bent towards the wall
on the other side. The secondary recirculation remains for the rigid-wall case. It is shown that
the disappearance of the secondary recirculation is not because of the pulsatility in the flow but
because of the wall compliance.

Although the aneurysm of Subject 2 has typical features of a ruptured aneurysm, it has been
staying unruptured. The hemodynamic features obtained with the compliant-wall model shows the
disappearance of the secondary recirculation linked to the degrading of the aneurysm wall. That
could be the reason why the aneurysm did not rupture despite the geometric features typically
seen in ruptured aneurysms. We previously reported in [11] that the effect of the wall deformation
was not to alter the flow patterns in the aneurysm but to decrease the WSS at the focal area of
high WSS. For Subject 2, the effect of wall deformation appears in a different way to alter the
flow patterns in the aneurysm.
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Figure 7. Comparison of the flow velocity profiles: (a) at the peak systole and (b) at t = 0.10 s, for the
rigid-wall (left), HBP (middle) and NBP (right) cases.

6. CONCLUSIONS

Computational analyses of the interaction between the blood flow and the arterial/aneurysmal
wall for two subjects under hypertensive and normotensive blood pressures were carried out.
Our objective was to better understand the mechanism of disease progression with reference to
hemodynamic WSS, particularly focused on the effects of hypertensive blood pressure, which is
one of the risk factors in the rupture of aneurysms. The results show that hypertensive blood
pressure has an influence for one of the subjects but not the other one. For the first subject,
hypertensive blood pressure alters the WSS distribution on the aneurysm. The WSS is higher on
the aneurysm under hypertensive blood pressure. For the second subject, on the other hand, the
WSS on the aneurysmal wall is not altered by hypertensive blood pressure. The difference in the
effects of hypertensive blood pressure is because of the relationship between the flow patterns and
the nature of the wall deformation, e.g. the magnitude of the wall displacement at the location of
the flow impingement. Although the influence of hypertensive blood pressure on the flow patterns
is insignificant for the second subject, it is shown that the deformation of the aneurysm wall alters
the flow patterns that are linked to the weakening of the aneurysm wall. This is consistent with the
fact that the aneurysm of the second subject did not rupture despite its geometric features typically
observed in ruptured aneurysms. The results show the importance of subject-specific simulations,
because the interaction between the blood flow and the arterial wall deformation and the effect of
hypertensive blood pressure very much depend on the individual aneurysm geometry.
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